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• The CP violating Dashen phase in QCD occurs when the up quark mass becomes sufficiently negative.
• Before reaching this phase, all physical hadronic masses and scattering amplitudes behave smoothly with the

up-quark mass.
• The topological susceptibility of the gauge fields diverges to negative infinity as the Dashen phase is

approached.
• A zero in the topological susceptibility provides a tentative signal for the point where the mass of the up quark

vanishes.
• The universality of this definition remains unproven. Potential ambiguities are discussed.
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a b s t r a c t

The CP violating Dashen phase in QCD is predicted by chiral
perturbation theory to occur when the up–down quark mass dif-
ference becomes sufficiently large at fixed down-quark mass. Be-
fore reaching this phase, all physical hadronic masses and scatter-
ing amplitudes are expected to behave smoothlywith the up-quark
mass, even as thismass passes through zero. In Euclidean space, the
topological susceptibility of the gauge fields is positive at positive
quarkmasses but diverges to negative infinity as the Dashen phase
is approached. A zero in this susceptibility provides a tentative sig-
nal for the point where themass of the up quark vanishes. I discuss
potential ambiguities with this determination.
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1. Introduction

Because of confinement, properties of quarks such as their masses cannot be observed directly.
Indeed, what does a quark mass mean when free quarks do not exist? The commonly advocated
approach is to do a lattice calculation and adjust the bare quark masses to match physical hadron
properties. As one takes the continuum limit, the bare quark masses will flow as determined by
the renormalization group. Because of asymptotic freedom and given a renormalization scheme, this
behavior is precisely determined and allows us to extract a renormalized quark mass. This procedure
is briefly reviewed in Appendix A. However, the details can depend on the precise lattice formulation,
which raises the possibility of an ambiguity in defining the massless quark limit.

In a letter a number of years ago I pointed out that non-perturbative effects can leave an additive
ambiguity in the definition of a non-degenerate quark mass [1]. This additive effect goes away in the
isospin limit, a limit in which most lattice calculations are currently done. In the light quark regime,
the quarkmasses are closely tied to the pseudo-scalarmeson spectrum,withmassless pions appearing
as the up and down quarks become massless together.

Of course isospin in nature is only an approximate symmetry, being broken by the non-degeneracy
of the up and down quarks as well as by electromagnetism. Indeed, it is somewhat remarkable that
both effects are of comparable order to the hadron spectrum. The charged and neutral pion mass
difference of a few MeV is generally regarded as being primarily from electromagnetic effects while
the neutron–proton mass difference receives comparable contributions both from an underlying
quark mass difference and from electromagnetism.

In chiral perturbation theory, to lowest order the pions have a mass squared proportional to the
average of the up and down-quark masses. With isospin breaking, the neutral and charged pions are
no longer exactly degenerate. The dominant effect is the energy in the electromagnetic field of the
charged pion, leaving the neutral pion the lightest of the three. In addition, chiral perturbation theory
predicts a small further splitting proportional to the square of the up–downmass difference [2]. Here
I will concentrate on the quark mass difference effects, although presumably the electromagnetic
effects have similar consequences and do not modify the qualitative picture below.

Since the pionmass is tied to the average of the up and down quark masses, there remains a gap in
the hadronic spectrum if the down quark remains massive while the up-quark mass is taken to zero.
Indeed, all physical processes are expected to behave smoothly in this limit. This brings us back to the
question in Ref. [1] of whether there is a precise meaning to having a vanishing up-quark mass.

In this paper I discuss the qualitative behavior of the theory in the vicinity of vanishing up-quark
mass, with particular attention to topological issueswith the gauge fields. Topology is important since
the pion mass difference receives a non-perturbative contribution through the induced mixing of the
pion and the eta prime mesons, and the eta prime mass is dominated by non-perturbative effects
from topology [3]. This mixing behaves smoothly even at a zero up-quark mass, despite the classical
suppression of topological effects from a zero in the fermion determinant at non-trivial topology. In
particular the eta prime mass, which comes primarily from these effects, remains of order the strong
interaction scale throughout this region.

Continuing to a negative up-quark mass, I argue that the topological susceptibility will diverge to
negative infinity as one approaches what is known as the Dashen phase [4]. Since this susceptibility
is a positive quantity for positive quark masses, it must show a zero before this divergence becomes
dominant. Assuming a single zero, this provides a natural definition of the point of vanishing up-quark
mass. Nevertheless, since typical configurations in a path integral are non-differentiable, there may
be subtleties that can lead to ambiguities in defining topology.

In Section 2 I review the standard picture fromchiral perturbation theory of how the three pions are
degenerate up to second order in the quark masses. In Section 3 I discuss the continuation to negative
up-quarkmasses andwhy the Dashen phase is expected to appear. Section 4 discusses the topological
susceptibility as a signal of where the up-quark mass vanishes. Here I argue for the divergence of this
quantity as the Dashen phase is approached. Then in Section 5 I discuss the ambiguities that can arise
in trying to define topology on the lattice. Section 6 discusses how these ambiguities are not resolved
by current algebra and the symmetries of the theory. A brief summary of the conclusions appears in
Section 7.
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A couple of closely related topics are relegated to appendices. Appendix A reviews how the bare
quark mass always flows to zero in the continuum limit and how to define a renormalized mass from
this flow. Appendix B discusses how the absence of a CP violating Theta parameter dependence of QCD
at a vanishing mass is a tautology associated with using singular coordinates.

2. The pseudo-scalar spectrum and the anomaly

In this section I review the standard picture of the pseudo-scalar meson spectrumwith two flavors
of light fermions, the u and d quarks. From the fermion fields I can construct four pseudo-scalar
operators

uγ5d ∼ π+

dγ5u ∼ π−

uγ5u

dγ5d. (1)

The first two create the charged pions, which have a natural mass controlled by the average of the up
and down quark masses.

All of these operators involve a helicity flip. Helicity conservation is usually taken as a property of
gauge theories coupled to light fermions. Thus for light quarks one might naively argue that the last
two operators above would not mix significantly as that would involve helicity change for both the
up and down quarks. This suggests that there would be two light neutral pseudo-scalars, one whose
mass is controlled by the up-quark mass and a second by the down-quark mass.

Of course this expectation is naive. The anomaly induces a strong mixing between the neutral
pseudo-scalar states. The symmetric combination

uγ5u + dγ5d ∼ η′ (2)

gains a mass of order Λqcd and becomes the eta prime meson. How this mixing takes place through
gauge configurations of non-trivial topology was elegantly described by ’t Hooft [3], and the mixing
term is often referred to as the ’t Hooft vertex.

After the above mixing takes place, one is left with the orthogonal combination

uγ5u − dγ5d ∼ π0, (3)

to represents the neutral pion. Having approximately equal contributions from each quark, π0 also
has its mass dominantly controlled by the average quark mass. In the isospin limit of equal up and
down quark masses, the three pions are degenerate up to electromagnetic splittings, which I ignore
here.

Away from the isospin limit, small mixings of the eta prime and the neutral pion should remain.
This allows for a purely hadronic contribution to the pion mass splitting proportional to (md − mu)

2.
The sign of this term is generally expected to drive the neutral pion mass down, although symmetry
alone does not determine this. The qualitative picture is sketched in Fig. 1.

3. The Dashen phase

An important observation is that when the up-quark mass vanishes with a non-vanishing down-
quarkmass, the theory retains amass gap. This leads to the question of what happens as the up-quark
mass is varied to negative values. The quark mass itself is only a formal parameter while the lightest
physical particles are the pions. Their masses are controlled primarily by the average of the up and
down quark masses, and it is natural to expect them to continue to drop until the up-quark mass
is comparable in magnitude to the negative of the down-quark mass. The behavior of all physical
quantities should be smooth in the quark masses in the immediate vicinity of vanishing up-quark
mass as long as the down-quark mass remains non-zero.
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Fig. 1. The qualitative behavior of the meson spectrum as a function of the up-quark mass with a fixed non-vanishing down-
quark mass. Note that a mass gap persists as the up-quark mass approaches zero. Away from the isospin limit, mixing of the
neutral pion with the eta prime can result in splitting between the neutral and charged pions. This splitting is quadratic in the
quark mass difference.

On continuing to decrease the up-quark mass further into the negative region, the neutral pion
mass will become progressively lighter and may eventually hit zero. Beyond such a point, the neutral
pions should form a condensate with the pion field acquiring an expectation value. As the pion is
CP odd, the new phase spontaneously breaks CP symmetry. The possibility of such a spontaneous
breaking was postulated some time ago by Dashen [4]. As that was before the development of QCD as
the theory underlying the strong interactions, his argument was based on current algebra ideas. The
qualitative picture is illustrated in Fig. 2.

Note that this phenomenon is inherently non-perturbative. Naively the sign of a fermion mass
is irrelevant in perturbative diagrams because it can be reversed by a chiral rotation. That rotation,
however, is not valid due the chiral anomaly. This pion condensation occurs in a region where the
product of the quark masses is negative. As is well known and discussed briefly in Appendix B, when
the quark masses are made complex, the phase Θ of the product of the quark masses is a physical
parameter [3]. Thus the Dashen phase occurs in a region where formally Θ = π . But note from this
example that there is also a finite region of negative up-quark mass before this condensation takes
place. Thuswhether or not there is a spontaneous breaking of CP atΘ = π will depend on the detailed
values of the quark masses.

Vafa andWitten [5] have argued that QCD cannot spontaneously break CP. This argument assumed
that one isworking in a regionwhere the fermion determinant appearing in the path integral is strictly
positive, i.e. at Θ = 0. The Dashen phase is not a counterexample to their argument since it occurs
where on some gauge field configurations the up-quark determinant is negative.

4. Implications for the path integral

The above discussion of how the physical states behave as the quark masses are varied implicitly
applies to the properties of theMinkowski space theory. The picture raises some interesting questions
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Fig. 2. Continuing the up-quark mass into the negative regime brings up the possibility of a vanishing pion mass and a
subsequent condensation of the neutral pion field.

on how this physics appears in the path integral formulation. In particular, when fermions are
integrated out in terms of the determinant of the Dirac operator, what are the implications for the
behavior of this determinant?

Simple chiral Lagrangian arguments suggest that the boundary of the Dashen phase involves a
second order phase transition [6,7]. At the critical point, the divergent correlation length is associated
with the vanishing of the neutral pionmass. This example shows explicitly that one canhave vanishing
particle masses or divergent correlations in QCD at a point where none of the quark masses vanish.
Because of the mass term, the Dirac operator will not have any small or vanishing eigenvalues.

In contrast, the fact that amass gap persists in the vicinity of vanishing up-quarkmass is an explicit
example of a situation where the Dirac operator could have small eigenvalues but this does not imply
important long range physics. Furthermore, the absence of any obvious structure raises the question
of whether there is some physical way to determine exactly where the up-quark mass vanishes. That
was the question raised in [1].

In the path integral approach, one standard answer to defining a vanishing up-quark mass is that
this represents the point where the topological susceptibility vanishes. This is connected to the index
theorem, which shows that the massless Dirac operator has a zero eigenvalue whenever the gauge
field has non-trivial topology.

In any given gauge configuration the topological charge is formally defined as

ν =
g2

16π2


d4xFµν(x)F̃µν(x). (4)

The susceptibility then follows from the path integral as

ξ =
1
V

⟨ν2⟩ (5)

where V is the space–time volume and the expectation is over the space of gauge configurations
appropriately weighted with the action, including the fermion determinant. Using translational
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invariance, this can be written

ξ =


g2

16π2

2 
d4xFµν(x)F̃µν(x)Fµν(0)F̃µν(0)


. (6)

For convenience below I abbreviate Fµν(x)F̃µν(x) as F F̃(x).
It is important to note that since F F̃ is an odd operator under time reversal, the correlator

⟨F F̃(x)F F̃(0)⟩ (7)

is negative at non-zero separations [8]. This is true even at positive quark masses where the path
integral weight is strictly positive. Since the full susceptibility ξ is defined as a square, it is expected
to be positive when the quark masses are positive. The interpretation is that the correlator in Eq. (7)
has a singular contact term providing a positive contribution that exceeds the negative part from non-
zero separation. We will shortly see that the situation is more complicated when the up-quark mass
is negative.

It is straightforward to show that as a function of the up-quark mass the topological susceptibility
must vanish somewhere before reaching the Dashen phase. At negative quarkmass the susceptibility,
despite being formally a square, need not be positive. This is possible because the fermion determinant
that enters the weight for the path integral can be negative. Although the path integral then loses its
probability interpretation, presumably it still exists as a correct approach to the quantum theory.

For a negative up-quark mass near zero one expects higher topology configurations to be strongly
suppressed. In this situation, the topological susceptibility should be dominated by the minimal non-
trivial winding number of unity (winding number zero gives no contribution to the susceptibility),
and in this case the fermion determinant is negative.

Not only can ξ be negative, but as one approaches the endpoint of theDashen phase, the topological
susceptibility actually diverges to negative infinity. Since for positive mass the susceptibility is a
positive definite quantity, there must be a zero somewhere before we reach the Dashen phase. The
position of this zero is a natural definition of theory with zero up-quark mass.

The divergence of the susceptibility at the boundary of the Dashen phase is a direct consequence
of the vanishing of the neutral pion mass at that point. Since isospin is broken, one expects some
mixing between the neutral pion and both the eta prime meson and any pseudo-scalar glueball
states. In particular, the operator F F̃ should have a finite amplitude to create the neutral pion; i.e.
⟨π0|F F̃ |0⟩ ≠ 0. This means that at long distances the integral in Eq. (6) will diverge as −1/M2

π0
due

to pion intermediate states. Again, since F F̃ is odd under time reversal, this divergence is to negative
infinity [8]. And since the boundary of theDashenphase is determined by long distance piondynamics,
one does not expect the contact term to have a corresponding divergence, nor does one expect the
coupling of F F̃ to the pion to vanish.

5. Topology and the lattice

So we see that as the up-quark mass varies, there must be a point where the topological
susceptibility vanishes. But is this actually a physical concept, or could it depend on how the theory
is regulated? This is a non-trivial point since in a path integral typical gauge configurations involve
non-differentiable fields. Since gauge field topology is a non-perturbative concept, one must consider
this question in the context of a non-perturbative regulator, i.e. the lattice. Indeed, numerous lattice
schemes for defining topology have been proposed, but all presented so far leave room for ambiguities.
This is actually a rather old topic; some numerical studies appear in Refs. [9–11].

One could just take a simple discretization of F F̃ and sum its value over configurations taken from
a Monte Carlo simulation. One example of this is in Ref. [12]. The problem with this approach is that
unlikewith smooth continuum fields, any local definition of F F̃ will not in general be a total derivative
and its integral will not be an integer. As such it is not a true topological object.

To get around this onemight impose a smoothness condition on the lattice fields such that one can
uniquely construct continuum field interpolating between the lattice sites [13,14]. This leaves open a
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fewquestions. First, a constraint on the lattice action that is not analytic in the gauge field variableswill
lead to a non-positive transfer matrix and correspondingly a non-Hermitean Hamiltonian when the
cutoff is in place [15]. Second, as one takes the continuum limit, it is unclear to what extent different
smoothness conditions will give the same result.

As a variation on the previous, one can perform a smoothing on the gauge field until it settles into a
state of well defined topology. One example is to use a differential flow with the Wilson gauge action
as a potential [16,17]. This procedure, however, is non-unique. First, the result can depend on the
cooling action used. The standard Wilson gauge action is one choice, but it is unclear why this should
be the appropriate form when effects of dynamical quarks are present. Second, the winding number
found can depend on how long one cools. Without some constraint on the local action, topological
objects can shrink with cooling and ‘‘fall through the lattice’’.

This leads us to a class of prescriptions based on the index theorem relating zero modes of the
Dirac operator to the gauge field topology [18]. The simplest is to count the small real eigenvalues
of the Wilson Dirac operator. The ambiguity here lies in the definition of ‘‘small’’. If one takes all
real eigenvalues and counts them with their chirality, one will always get zero. Presumably one
should ignore the eigenvalues in the doubler region, but with dynamical fermions the border between
physical and doublermodes becomes blurred. Note that the zero of the topological susceptibilitymust
occur for the up-quark mass in a region where negative real eigenvalues can occur. This allows a
cancellation of the purely positive contribution when there are no negative real eigenvalues against
the negative contribution when such modes do exist.

An action satisfying the Ginsparg–Wilson relation [19] can have exact zero modes and they
properly match with the gauge field index when the gauge fields are smooth. With such an approach,
a vanishing up quark mass automatically suppresses all configurations of non-zero topology since the
fermion determinant is zero for any such. This, however, does not resolve the issue because there are
many operators that satisfy this relation, and for general fields they do not all give the same index. The
Neuberger construction of the overlap operator [20] depends on a projection from a kernel such as the
Wilson operator. The location of the projection point suffers the same ambiguity as in the previous
paragraph. Indeed, one would expect the eigenvalue count for typical configurations to decrease as
the projection point is lowered and fewer real eigenvalues of theWilson kernel lie below this location.
Again, the question here is tied to the real eigenvalues, which are inherently non-perturbative. It is
often asserted that with theWilson kernel there will be a regionwhere the density of real eigenvalues
will decrease rapidly enough to eliminate this ambiguity, although the numerical evidence for this
remains limited [21–23].

I note in passing that the staggered fermion approach to lattice fermions retains the naive
symmetry under reversing the sign of any quark mass. This ensures the uniqueness of the zero mass
theory. However this approach suffers doubling issues, making anymassless species actuallymultiply
degenerate. The rooting procedure often advocated to circumvent this problem is known to be an
approximation which severely mutilates the ’t Hooft vertex [24,25]. Unlike as discussed in Section 2,
taste non-singlet uγ5u mesons will survive the procedure with masses controlled by the up-quark
mass alone. Pairs of these spurious mesons will cause unphysical thresholds in scattering amplitudes
when the physical quarks are not degenerate, even when all quarks have positive mass.

6. Symmetries and currents

One might try to circumvent these issues via continuum concepts using currents related to the
symmetries of the theory. Indeed, Dashen’s discussion of the possibility of a CP violating phase was
based on current algebra and was presented before QCD became the accepted theory for the strong
interactions. In this section I will discuss how the lack of any symmetry at vanishing up quark mass
leaves open an ambiguity in defining this point.

When the quark mass difference vanishes we have isospin symmetry. This makes a zero mass
difference awell defined concept. To get a handle on the quarkmass difference aswemove away from
this point, one might consider the partial conservation of a charged vector current. For a small mass
difference the divergence of such a current is proportional to the mass difference with a coefficient
depending on the chiral condensate. However, as the mass difference grows, the behavior of this
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divergence ceases to be linear. In particular, as one passes through the boundary of the Dashen phase,
an associated non-analyticity will appear in all physical quantities, including the charged currents. It
is these non-linearities that leave room for the ambiguities discussed in the previous section.

Another interesting situation occurs when the sum of the up and down quark masses vanishes.
Then, when the quark mass difference does not vanish, we are deep in the Dashen phase. Here we
can move the sign of the negative quark mass into the gauge field topology with a term in the action
proportional to F F̃ . Then there is again an explicit isospin symmetry between the quarks. This serves
to protect the mass sum from renormalization. We again have a symmetry that protects the average
quark mass from an additive renormalization.

The issue of a vanishing up quark mass when the down quark is massive is not associated with
either of these two symmetry points. Rather, it involves neither the sum nor the difference of the
quark masses vanishing. In this case these quantities are not related by any fundamental symmetry.
For example, they transform differently under isospin; the sum of the masses is an isoscalar quantity
and the difference is an isovector. While both are individually multiplicatively renormalized, there is
no rigorous symmetry that relates their non-perturbative renormalization factors.

A further complication is that non-perturbative physics requires a lattice approach, and then
properly defined currents are dependent on the detailed fermion formulation. With all lattice
actions, the conserved currents are not simple on-site quantities. Particularly with Ginsparg–Wilson
type operators, they involve fields spread over formally unlimited distances. Given a particular
lattice formulation, the underlying quark masses may be well defined, but there appears to be no
fundamental reason to require the physics at a vanishing quarkmass to be universal between schemes.

7. Conclusions

There are three main conclusions to draw from this discussion. First, the topological susceptibility
must diverge as the Dashen phase is approached. Second, since this divergence is to negative infinity,
with any sensible regulator theremust exist a zero in the susceptibility as the up quarkmass varies up
to its physical value. Third, it is unclear whether the location of this zero is universal between lattice
schemes.

The third point is somewhat controversial since this zero provides a tentative definition of the point
where the up quark is massless. Because all knownmethods to locate this point in a lattice simulation
appear to have some arbitrariness, it remains unclear whether the zeromust scale in amanner to give
a unique continuum limit formore physical quantities. In particular, two different lattice cutoffs taken
to the continuum limit while forcing mu = 0 can potentially give different ratios for physical hadron
masses.

From a phenomenological point of view, there seems to be little reason to care whether the up-
quark mass is ambiguous. This is not a directly observable quantity, and both hadron masses and
scattering amplitudes behave smoothly as the quark mass passes through zero. For confidence in
lattice results, it is important to compare physical results with different schemes. The issues raised
here suggest that using quark masses or topological susceptibility directly for such matching might
lead to unpredictable results.
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Appendix A. Quark masses and the renormalization group

In lattice gauge language, asymptotic freedom tells us how to vary the bare gauge coupling and
quark masses to take the continuum limit. This variation is manifest via the ‘‘renormalization group
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equations’’

a
dg
da

= β(g) = β0g3
+ β1g5

+ · · · + non-perturbative

a
dm
da

= mγ (g) = m(γ0g2
+ γ1g4

+ · · ·)+ non-perturbative. (8)

Here the three initial perturbative coefficients β0, β1, γ0 are scheme independent and known
[26–32]. These equations are easily integrated to show

a =
1
Λ

e−1/2β0g2g−β1/β
2
0 (1 + O(g2))

m = Mgγ0/β0(1 + O(g2)). (9)

The quantities Λ and M are ‘‘integration constants’’ for the renormalization group equations.
Rewriting these relations gives the coupling and mass flow in the continuum limit a → 0

g2
∼

1
log(1/Λa)

→ 0 ‘‘asymptotic freedom’’

m ∼ M


1
log(1/Λa)

γ0/β0
→ 0. (10)

HereΛ is usually regarded as the ‘‘QCD scale’’ andM as the ‘‘renormalized quark mass’’.
Thus it would seem that given some renormalization scheme we have a way to define the quark

mass. The issue with defining a vanishing quark mass is complicated due to the ‘‘non-perturbative’’
terms in Eq. (8). Because the integration constantΛ introduces a new scale into the theory, the non-
perturbative contribution to the mass flow need not be proportional to the bare mass. Without some
symmetry to prevent it, an additive mass shift proportional toΛ is generally possible. And with only
one massless quark, the anomaly breaks the naive chiral symmetry that would prevent such a term.

Of course with multiple degenerate quarks we would have flavor non-singlet chiral symmetries
thatwould remove any such additive renormalization. But in the case considered here, we are keeping
the down-quark mass fixed at a non-zero value. The fact that one would recover chiral symmetry if
the down-quark mass was also zero indicates that the size of any potential ambiguity in the up-quark
mass should be proportional to the down-quark mass.

Appendix B. The Theta parameter and CP symmetry

As is well known, QCD as a renormalizable quantum field theory has the possibility of including
a CP violating term, usually called Θ . This is closely tied to the anomaly and can be moved around
between appearing either in the quark mass matrix or the appearance of a topological term in the
gauge field action. One often proposed way to locate the vanishing up-quark mass point is that at this
point the theory is independent of the Theta parameter. But in the light of the above discussion this
is actually a tautology.

After rotating the theta parameter into the up-quark mass, this mass term takes the form

m1ψψ + im5ψγ5ψ. (11)

From this, it is conventional to define a complex mass parameter

m = m1 + im5. (12)

The phase of this quantity is the parameter Θ . Of course, if m vanishes as a complex number, Θ ill
defined and irrelevant.

The problemwith this interpretation is thatm1 andm5 are independent parameters. And the above
discussion suggested an ambiguity in defining wherem1 vanishes. This ambiguity feeds through into
an ambiguity in definingΘ . In a sense the conventional approach attempts to set up polar coordinates
about a point which is not a natural origin.
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